Experimental Nanomechanics of One-dimensional Nanomaterials by in Situ Microscopy

نویسندگان

  • XIAODONG HAN
  • ZHONG LIN WANG
  • Z. L. Wang
چکیده

This paper provides a comprehensive review on the methodological development and technical applications of in situ microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), developed in the last decade for investigating the structure-mechanical-property relationship of a single one-dimensional nanomaterial, such as nanotube, nanowire and nanobelt. The paper covers both the fundamental methods and detailed applications, including AFM-based static elastic and plastic measurements of a carbon nanotube, external field-induced resonance dynamic measurement of elastic modulus of a nanotube/nanowire, nano-indentation, and in situ plastic deformation process of a nanowire. Details are presented on the elastic property measurements and direct imaging of plastic to superplastic behavior of semiconductor nanowires at atomic resolution, providing quantitative information on the mechanical behavior of nanomaterials. The studies on the Si and SiC nanowires clearly demonstrated their distinct, “unexpected” and superior plastic mechanical properties. Finally, a perspective is given on the future of nanomechanics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays.

The bending modulus of individual carbon nanotubes from aligned arrays grown by pyrolysis was measured by in situ electromechanical resonance in transmission electron microscopy (TEM). The bending modulus of nanotubes with point defects was approximately 30 GPa and that of nanotubes with volume defect was 2-3 GPa. The time-decay constant of nanotube resonance in a vacuum of 10(-4) Torr was appr...

متن کامل

Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we...

متن کامل

High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates u...

متن کامل

Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube.

A new type of one-dimensional (1D) carbon structure, carbon nanowires (CNWs), was discovered in the cathode deposits prepared by hydrogen arc discharge evaporation of carbon rods. Observation of high-resolution transmission electron microscopy (HRTEM) indicates that a CNW consists of a multiwalled carbon nanotube (MWNT) with a long 1D linear carbon chain (C chain) inserted into its innermost tu...

متن کامل

Dynamic Characteristics of Functionalized Carbon Nanotube Reinforced Epoxy Composites: An Experimental Approach

The effects of amine functionalization of carbon nanotubes (CNTs) and CNTs weight percent (wt. %), on the first bending natural frequencies and damping properties of CNT/epoxy composites are investigated in this paper. CNTs and amine functionalized CNTs (AFCNTs), with two different weight percentages, are used to manufacture the beam shaped specimens. Epoxy, CNT/epoxy (0.25 and 0.5 wt. % of CNT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007